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Abstract

Automated algorithm configuration relieves users from tedious, trial-and-error tun-
ing tasks. A popular algorithm configuration tuning paradigm is dynamic algorithm
configuration (DAC), in which an agent learns dynamic configuration policies
across instances by reinforcement learning (RL). However, in many complex algo-
rithms, there may exist different types of configuration hyperparameters, and such
heterogeneity may bring difficulties for classic DAC which uses a single-agent RL
policy. In this paper, we aim to address this issue and propose multi-agent DAC
(MA-DAC), with one agent working for one type of configuration hyperparameter.
MA-DAC formulates the dynamic configuration of a complex algorithm with mul-
tiple types of hyperparameters as a contextual multi-agent Markov decision process
and solves it by a cooperative multi-agent RL (MARL) algorithm. To instantiate,
we apply MA-DAC to a well-known optimization algorithm for multi-objective
optimization problems. Experimental results show the effectiveness of MA-DAC in
not only achieving superior performance compared with other configuration tuning
approaches based on heuristic rules, multi-armed bandits, and single-agent RL, but
also being capable of generalizing to different problem classes. Furthermore, we
release the environments in this paper as a benchmark for testing MARL algorithms,
with the hope of facilitating the application of MARL.

1 Introduction

Finding right configurations of hyperparameters is critical for many learning and optimization
algorithms [21]. Automated methods, such as algorithm configuration (AC) [19, 32], emerge to
search for right configurations, with the aim of relieving users from tedious, trial-and-error tuning
tasks. However, static configuration policies obtained by AC may not necessarily yield optimal
performance (compared with dynamic policies) since algorithms may require different configurations
at different stages of their execution [44].

Dynamic algorithm configuration (DAC) [4, 1] is a well-known paradigm for obtaining dynamic
configuration policies. Unlike AC, DAC can dynamically adjust the algorithm’s configuration during
the optimization process, through formulating it as a contextual Markov decision process (MDP)
and then solving it by reinforcement learning (RL) [39]. DAC has been found to outperform static
methods on many tasks, including the learning rate tuning of deep neural networks [9], step-size
adaptation of evolution strategies [41], and heuristic selection of AI planning [44].
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The task of DAC typically focuses on a single type of configuration hyperparameter, such as tuning
the step-size in CMA-ES [41]. However, due to the increasing complexity of real-world problem
modeling, there are many algorithms whose performance rests on multiple types of hyperparameters.
Tuning one type while fixing the rest may not produce promising results. Take a popular evolutionary
algorithm for multi-objective optimization problems, MOEA/D [59], as an example. It has four
types of configuration hyperparameters: weights, neighborhood size, reproduction operator type, and
parameters associated with the reproduction operator used. All of them are critical and significantly
affect the performance of the algorithm [51]. Finding a near-optimal configuration combination for
each part of these hyperparameters requires massive manual effort [14]. However, how to jointly
adjust multiple types of configuration hyperparameters is still an open problem [1].

In this paper, we attempt to extend DAC to deal with tasks with multiple types of configuration
hyperparameters. We model this as a cooperative multi-agent problem [34], with each agent handling
one type of hyperparameter, for a shared goal (i.e., maximizing the team reward). Specifically, the
proposed multi-agent DAC (MA-DAC) method formulates the task as a contextual multi-agent MDP
(MMDP) [7], and solves it by a common pay-off cooperative multi-agent RL (MARL) algorithm. As
an instantiation, we apply MA-DAC to the multi-objective evolutionary algorithm MOEA/D [59] to
learn the right configurations of its four types of hyperparameters by the classic MARL algorithm
called value-decomposition networks (VDN) [46].

Experiments on well-established multi-objective optimization problems show that MA-DAC outper-
forms other configuration tuning methods based on heuristic rules [37], multi-armed bandits [26, 17]
and single-agent RL [33]. Furthermore, we demonstrate the generalization ability of the learned
MA-DAC policy to both inner classes (different instances with the same number of objectives)
and outer classes (different instances with different numbers of objectives). Ablation studies also
demonstrate the importance of tuning every type of hyperparameter.

Our contributions are three-fold:

1. To the best of our knowledge, the MA-DAC method is the first one to address the dynamic
configuration of algorithms with multiple types of hyperparameters.

2. The contextual MMDP formulation of MA-DAC is analyzed, and experimental results show
that the presented formulation works well and has good generalization ability.

3. The instantiation of configuring MOEA/D in this work can be used as a benchmark problem
for MARL. The heterogeneity of MOEA/D’s hyperparameters and the stochasticity of its
search can promote the research of MARL algorithms. Besides, the learned policies are
useful for a specific type of optimization task - multi-objective optimization, which will
facilitate the application of MARL.

2 Background

2.1 Dynamic algorithm configuration

Different from the static configuration of AC, DAC aims at dynamically adjusting the configuration
hyperparameters of an algorithm during its optimization process. Biedenkapp et al. [4] formulated
DAC as a contextual MDP MI := Mi∼I and applied RL to solve it. I represents the space
of problem instances, and each Mi := ⟨S,A, Ti, ri⟩ [4, 12] corresponds to one target problem
instance i ∈ I. The notion of context I allows to study generalization of policies in a principled
manner [23]. Given a target algorithm A with its configuration hyperparameters space Θ, a DAC
policy π ∈ Π maps the state s ∈ S (e.g., history of changes in the objective value achieved by the
target algorithm A) to the action a ∈ A (i.e., a hyperparameter θ ∈ Θ of the target algorithm A).
DAC aims at improving the performance of A on a set of instances (e.g., optimization functions).
Given a probability distribution p over the space I of problem instances, the objective of DAC is to
find an optimal policy π∗. That is,

π∗ ∈ argmin
π∈Π

∫
i∈I

p(i)c(π, i)di, (1)

where i ∈ I is an instance to be optimized, and c(π, i) ∈ R is the cost function of the target algorithm
with policy π on the instance i. It has been shown that DAC outperforms static policies in learning rate
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adaptation in SGD [9], step-size adaptation in CMA-ES [41], and heuristic selection in planning [44].
These applications all only involve a single type of hyperparameter. Dynamic configurations of
complex algorithms with multiple types of hyperparameters have been found to be difficult for current
DAC methods [12, 1].

2.2 Multi-agent reinforcement learning

A multi-agent system [56] under fully observable cooperative situation can be modeled as an
MMDP [7], which can be formalized as M := ⟨N ,S, {Aj}nj=1, T , r⟩, where N is a set of n
agents, S is the state space, and Aj is agent j’s action space. At each time-step, agent j ∈ N acquires
s ∈ S and then chooses the action a(j) ∈ Aj . The joint action a = ⟨a(1), . . . , a(n)⟩ leads to next
state s′ ∼ T (· | s,a) and all agents get a shared global reward r(s,a).

The goal of an MMDP is to find a joint policy that maps the states to probability distributions over
joint actions, π : S → ∆(A1 × A2 × · · · × An), where ∆(A1 × A2 × · · · × An) stands for the
distribution over joint actions, with the goal of maximizing the global value function:

Qπ(s,a) = Eπ

[ ∞∑
t=0

γtr(st,at) | s0 = s,a0 = a

]
. (2)

3 Multi-agent DAC

This section is devoted to the MA-DAC method, where Section 3.1 is concerned with formulating
MA-DAC as a contextual MMDP and Section 3.2 explains components of MA-DAC.

3.1 Problem formulation

We propose MA-DAC as a new paradigm for solving the dynamic configuration of algorithms
with multiple types of hyperparameters. We formulate MA-DAC as a contextual MMDP MI :=
{Mi}i∼I , where Mi := ⟨N ,S, {Aj}nj=1, Ti, ri⟩ is a single MMDP as defined in Section 2.2. The
notion of context I induces multiple MMDPs [4, 12]. Each Mi stands for a specific instance i
sampled from a given distribution over I, where an instance i ∈ I corresponds to a function f to
be optimized. Different Mis have shared state and action spaces, but with different transitions and
reward functions. Algorithms are often tasked with solving different problem instances from the
same or similar domains. Searching for well-performing parameter settings on a specific instance
might achieve strong performance on that individual instance but might perform poorly in new
instances. Therefore, we explicitly take the instance distribution I as context into account to facilitate
generalization [4].

Given a parameterized algorithm A with a configuration space Θ = {θj}j∈N , one agent in MA-DAC
is to handle one type of configuration hyperparameter θj ∈ Θ and all the agents work with the same
goal, i.e., maximizing the team reward. The action space of each agent j ∈ N is the hyperparameter
space of the corresponding θj . Note that MA-DAC can be seen as a common-payoff cooperative
MARL problem and can be solved by any cooperative MARL algorithm.

3.2 Components of MA-DAC

Next, we introduce several important components of MA-DAC, including the state, action, transition,
reward, and instance set.

State. The state is used to describe the situation of the target algorithm, which is a key component
in MA-DAC. We suggest that the state should have the following properties.

1. Accessibility. The state should be accessible in each step during the optimization process.
2. Representation. The state should reflect the information in the optimization process.
3. Generalization. The learned policy is expected to generalize to inner and even outer classes

of instances. Thus, the state should consist of the common features across different instances.

Besides, it is better if the state can be easily obtained, reducing the computational cost. Note that
some of the above properties of state formulation have also been suggested for DAC [29, 12].
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Action. Each agent in MA-DAC focuses on one type of configuration hyperparameter. Its action
is the value of the hyperparameter that should be adjusted, which can be discrete or continuous.
MA-DAC agents are heterogeneous because they have completely different action spaces and affect
different types of hyperparameters of the target algorithm.

Transition. The transition function describes the dynamics of the problem. For an iterative algo-
rithm, each iteration can be defined as a step. Given state st, each agent j acts a(j)t , and the probability
of reaching state st+1 can be expressed as T (st+1 | st,at). Different from the state and action
spaces, the transition function depends on the given instance f ∈ F . Thus, the policy should identify
the characteristics of the current instance and take the optimal action under it.

Reward. The reward is used to guide the policy’s learning process, whose quality has a significant
impact on the policy’s final performance. Many RL benchmark environments include a well-defined
reward function. However, in many application scenarios, we must define the reward function
manually based on a specific metric that can indicate the final performance.

Since the goal of an iterative optimization algorithm at iteration t is to find a solution with the best
objective function value so far rather than to just find a better solution than the solution at the t− 1
step (since the quality of solutions in the last step may be poor), it would make sense to give the
policy a reward when finding a better solution than the best solution so far (rather than finding a better
solution than the solution at the last step). Another factor one may need to consider when designing a
reward function is that with time, it is getting harder to find better-quality solutions. In the beginning,
it may be easy to achieve rapid improvement of solution quality, but in later stages, improvement
could be harder. As such, a reward function that rewards more an agent who can find a better solution
in later stages can encourage the agent to find a very good solution in the end. Considering these two
factors, we propose the following reward function at step t:

rt =

{
(1/2) · (p2t+1 − p2t ) if f(st+1) < f∗

t

0 otherwise
, (3)

where

pt+1 =

{
f(s0)−f(st+1)

f(s0)
if f(st+1) < f∗

t

pt otherwise
, (4)

and f∗
t is the minimum metric value found until step t.

Cumulative rewards 
already obtained

Current reward 
obtained

Future cumulative 
rewards available

0 𝑝𝑝𝑡𝑡 𝑝𝑝𝑡𝑡+1 𝑝𝑝∗

Figure 1: Illustration of the reward function.

As shown in Figure 1, the isosceles right-angled triangle
indicates the maximum return we can get, where p∗ is the
largest value of pt. At step t, the current reward we obtain
is the area of the triangle with side length pt+1 minus the
area of the triangle with side length pt. The proposed
triangle-based reward function has two properties: 1) it
only rewards the agent when a new solution is better than
the best solution found so far and 2) the reward increases
in later stages. The comparative experiment is provided
in Appendix B.2. This design may be applicable to a
wide range of similar tasks.

Instance set. Instance set defines the optimization prob-
lem instances that have to be solved by the target algo-
rithm. Note that it is possible to learn policies even across
very heterogeneous problem instances by using the context information [4, 41]. Admittedly, if the
instances have some similar properties, the learned policy can generalize better [12].

4 Applying MA-DAC to dynamic configuration tuning of MOEA/D

As an instantiation, we apply MA-DAC to a well-established evolutionary algorithm for multi-
objective optimization problems, multi-objective evolutionary algorithm based on decomposition
(MOEA/D) [59]. As one of the most widely used multi-objective evolutionary algorithms, MOEA/D
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has several heterogeneous types of configuration hyperparameters (e.g., weights, neighborhood size,
and reproduction operator type), which is a good fit for the proposed MA-DAC. We first briefly
introduce multi-objective optimization and MOEA/D in Section 4.1, followed by detailed explanations
of applying MARL to MOEA/D in Section 4.2, which results in an MARL benchmark, denoted by
MaMo. Finally, we compare MaMo with other MARL benchmarks in Section 4.3.

4.1 Multi-objective optimization and MOEA/D

Multi-objective optimization refers to an optimization problem with more than one objective to
be considered simultaneously. It is very common in the real world. For example, in deep neural
networks, apart from the accuracy, one may also care about the model size, latency, and/or energy
consumption [31, 16].

A prominent feature of multi-objective optimization problems (MOPs) is that unlike single-objective
optimization problems, in MOPs there is no single optimal solution, but a set of Pareto optimal
solutions. A solution is called Pareto optimal if there is no other solution in the search space that
dominates it1. Unfortunately, the number of Pareto optimal solutions for a given MOP is typically
prohibitively large or even infinite. Therefore, the goal of a multi-objective optimization algorithm is
to find a good approximation that well represents all the Pareto optimal solutions.

Evolutionary algorithms have demonstrated their effectiveness to solve MOPs. Their population-
based nature can approximate the problem’s optimal solutions within one execution, with each
solution in the population representing a unique trade-off among the objectives. MOEA/D [59] is
a representative multi-objective evolutionary algorithm. Unlike other mainstream multi-objective
evolutionary algorithms like NSGA-II [10], which compare solutions based on their Pareto dominance
relation and density in the population, MOEA/D converts an MOP into a number of single-objective
sub-problems through a number of weights, where neighboring solutions work cooperatively for
the optimal solutions for the single-objective sub-problems. As such, MOEA/D entails different
heterogeneous types of hyperparameters, e.g., weights and neighborhood size. Such hyperparameters
significantly affect the performance of the algorithm. For example, different weight distributions are
suitable for MOPs with different Pareto front shapes as the weights are used to control the distribution
of the final population [28]. A large neighborhood has high search ability in the objective space while
a small neighborhood is beneficial for diversity maintenance in the decision space [22]. In short,
finding right configurations for these hyperparameters requires massive manual effort and different
configurations work well on different MOPs.

Note that some recent efforts have been made to adjust the hyperparameters of MOEA/D by heuristic
rules [37], multi-armed bandit [26], and RL [50]. However, they all focus on a single type of
hyperparameter, and also very few of them work on the dynamic algorithm configuration well.

4.2 MA-DAC for MOEA/D

In this section, we show how to apply MA-DAC to learn the configuration policy of MOEA/D and
also introduce the resulting environment MaMo. Each generation in the evolutionary process of
MOEA/D is one step in the MaMo.

The state of MaMo can be divided into three parts.

1. To describe the general properties of the optimization problems, the first part is the features
of the problem instance, including the number of variables and objectives.

2. To emphasize the general information of the algorithm, the second part includes the features
of the optimization process, i.e., how much computational budget has been used and how
many steps of the algorithm have not made any progress.

3. To show the properties of the population and that how the population is evolved, we use
several indicators, i.e., hypervolume2 [61], ratio of non-dominated solutions in the population
and average distance of the solutions, in the third part. For each indicator, we also use
the gap between the current value and the value corresponding to the last population to

1For two solutions x and y, x is called to dominate y, if x is not worse than y on all objectives and better
than y on at least one objective.

2Hypervolume is a quality indicator that can reflect both convergence and diversity of a solution set [27].
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reflect the immediate evolutionary progress. Besides, we use statistic metrics (the mean and
standard deviation) of the indicators in several recent steps and all steps from the beginning
to measure the short and long histories of the optimization, respectively.

To facilitate the generalization of the learned MA-DAC policy, we have pre-processed some state
features. More details about state are provided in Appendix A.2 due to space limitation.

We consider four heterogeneous types of configuration hyperparameters in MOEA/D as the actions
of different agents of MA-DAC.

1. Weights. In MOEA/D, weights are used to maintain the diversity of the converted single-
objective sub-problems [37]. The action space is discrete with two dimensions, i.e., adjusting
(T) and not adjusting (N) the weights. Furthermore, we limit the frequency of adjustment,
because too frequent adjustment will lead to drastic changes in the sub-problems and is
detrimental to the optimization process.

2. Neighborhood size. The neighborhood size is to control the distance between solutions in
mating selection; a small size helps the search exploit the local area while a large size helps
the search explore a wide objective space [54]. We discretize the action space into four
dimensions. That is, the neighborhood size can be 15, 20, 25 or 30.

3. Types of the reproduction operators. We consider four types of differential evolution (DE)
operators. Each type has different search ability [26, 42].

4. Parameters of reproduction operators. The parameters (e.g., scaling factor) of the reproduc-
tion operators in MOEA/D significantly affect the algorithm’s performance [45], and the
action space has four discrete dimensions.

The detailed definitions of the actions are given in Appendix A.3 due to space limitation.

We use the MOPs with similar properties from the well-known MOP benchmarks DTLZ [11] and
WFG [18] as the instance set of MaMo. These MOPs can have different number of objectives,
and those with the same number of objectives can be seen as inner classes because the number of
objectives considerably affects the properties and difficulty level of MOPs. We use the inverted
generational distance (IGD) [6] as the metric in Eq. (3), resulting in the reward function.

To learn the policy, we use a classical MARL algorithm named VDN [46], which is widely used in
cooperative multi-agent systems. VDN learns to decompose the team value function into agent-wise
value functions, alleviating the exponential growth of the action space. It follows the Individual-
Global-Max (IGM) principle [43], i.e., the consistency between joint and local greedy action selections
by the joint value function Qtot(s,a) and individual value functions

[
Qj(s, a

(j))
]n
j=1

. All parameters
in MA-DAC are updated using the standard TD loss from the global Q-value Qtot, which follows
additivity to factorize the global value function, i.e., Qtot(s,a) =

∑n
j=1 Qj

(
s, a(j)

)
. In the testing

phase, each agent acts greedily with respect to its Qj .

4.3 Comparison among MARL benchmarks

Table 1: Overview of MARL benchmarks and their properties.

Benchmark Heterogeneous #agents Stochastic Application scenarios

Matrix Games [8] × 2 Low Game
MPE [30] × 2-3 Low Game

MAgent [60] × 2-1000 Low Game
SMAC [40] ✓ 2-30 Low Game

Active Voltage Control [53] × 3-38 Low Control
MaMo (Ours) ✓ 2-4 High Optimization

There are many benchmarks [36, 48] emerged in recent years. In order to clearly show the character-
istics of MaMo, we compare it with some MARL benchmarks, as shown in Table 1. Heterogeneity
refers to agents having different action spaces or skills [52]. For example, in MaMo, there are four
entirely different action spaces, i.e., weights, neighborhood size, types of the reproduction operators
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and their parameters. Stochasticity means that performing the same action in the same state may lead
to a different next state. The high stochasticity of MaMo comes from the randomness of MOEA/D.

The primary benchmarks are designed to investigate different aspects of multi-agent systems. For
example, Matrix Games [8] and Multi-Agent Particle Environments (MPE) [30] are popular and
classical testbeds, to investigate cooperative or competitive behaviors in small scale settings (with
2–3 agents). MAgent [60] is used to test the scalability of MARL methods, where the number of
agents is up to 1000. SMAC [40] has attracted wide attention in recent years to test the coordination
ability in cooperative MARL [13, 57, 36]. For the first time, Active Voltage Control [53] creates
an exciting yet challenging real-world scenario for the application of MARL. To the best of our
knowledge, none of the known benchmarks has focused on highly heterogeneous and stochastic
scenarios in MARL. We hope our new MaMo benchmark can offer a good supplement that could
benefit the MARL community.

5 Experiments

To examine the effectiveness of MA-DAC, we conduct experiments using MaMo. We investigate the
following research questions (RQs). RQ1: How does MA-DAC perform compared with the baseline
and other tuning algorithms? RQ2: How is the generalization ability of MA-DAC? RQ3: How do
the different parts of MA-DAC affect the performance? We introduce the experimental settings in
Section 5.1, and investigate the above RQs in Section 5.2.

5.1 Experimental settings

We consider several well-established multi-objective test functions (DTLZ2, DTLZ4 and WFG4-
WFG9) with 3, 5 and 7 objectives following the practice in Bezerra et al. [3] to examine our method.
In all of the following experiments, several arbitrary functions (here DTLZ2, WFG4 and WFG6)
from the function set are used as the training set, and all the other functions are considered as the
testing set. Note that “train” and “test” in the tables mean that the comparison is based on the
training (i.e., DTLZ2, WFG4 and WFG6) and testing (i.e., DTLZ4, WFG5, WFG7, WFG8 and
WFG9) problems, respectively. IGD [6] is considered as the metric to measure the performance
of the algorithms. The mean and standard deviation of the IGD values obtained by each algorithm
on each MOP for 30 independent runs are reported. We apply the Wilcoxon rank-sum test with
significance level 0.05. For a fair comparison, other parameters (such as population size and
computational budget) are set to be the same across all the compared algorithms. More details
about the settings can be found in Appendix B.1 due to space limitation. Our code is available at
https://github.com/lamda-bbo/madac.

5.2 Experimental results

RQ1: How does MA-DAC perform compared with the baseline and other tuning algorithms?
We compare the MA-DAC policy with the original MOEA/D [59], DQN [33] and MA-UCB [17].
DQN is a single-agent RL algorithm that shares the same state, reward, and transition as our MA-DAC
but has a different action space that is the concatenation of the four types of hyperparameters. DQN
can be seen as an instantiation of DAC in MaMo. MA-UCB is a simplified algorithm that uses four
UCB agents to adjust the four types of hyperparameters. For MA-DAC and DQN, we perform the
training and testing on the problems with the number of objectives.

The results are shown in Table 2. As can be seen in the table, MA-DAC is significantly superior to
the other algorithms on almost all the 24 problems. Furthermore, MA-DAC (which is trained only on
DTLZ2, WFG4 and WFG6) shows excellent performance on previously unseen problems during the
training process, demonstrating its good generalization ability. DQN policy is significantly worse
than MA-DAC on all the problems, which is consistent with the previous observation that DQN
performs poorly in MARL tasks [15]. DQN suffers from the exponentially increasing action space
with the number of agents [34, 58], while MA-DAC effectively decomposes the action space, making
each agent much easier to find their own near-optimal policy and then leading to a good joint policy.
The superiority of MA-DAC over MA-UCB also demonstrates the necessity of learning configuration
policy by an MARL algorithm.
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Table 2: IGD values obtained by MOEA/D, DQN, MA-UCB and MA-DAC on different problems. Each result
consists of the mean and standard deviation of 30 runs. The best mean value on each problem is highlighted in
bold. The symbols ‘+’, ‘−’ and ‘≈’ indicate that the result is significantly superior to, inferior to, and almost
equivalent to MA-DAC, respectively, according to the Wilcoxon rank-sum test with significance level 0.05.

Problem M MOEA/D DQN MA-UCB MA-DAC

DTLZ2
3 4.605E-02 (3.54E-04) − 4.628E-02 (2.96E-04) − 4.671E-02 (3.70E-04) − 3.807E-02 (5.05E-04)
5 3.006E-01 (1.55E-03) − 3.016E-01 (1.34E-03) − 3.041E-01 (1.69E-03) − 2.442E-01 (1.26E-02)
7 4.455E-01 (1.41E-02) − 4.671E-01 (1.15E-02) − 4.826E-01 (9.59E-03) − 3.944E-01 (1.17E-02)

WFG4
3 5.761E-02 (5.41E-04) − 6.920E-02 (1.20E-03) − 7.165E-02 (1.83E-03) − 5.200E-02 (1.19E-03)
5 3.442E-01 (1.21E-02) − 2.810E-01 (6.86E-03) − 2.859E-01 (6.77E-03) − 1.868E-01 (2.81E-03)
7 4.529E-01 (1.79E-02) − 3.725E-01 (1.14E-02) − 3.868E-01 (1.54E-02) − 3.033E-01 (3.66E-03)

WFG6
3 6.938E-02 (5.50E-03) − 6.834E-02 (1.78E-02) − 6.601E-02 (1.00E-02) − 4.831E-02 (8.95E-03)
5 3.518E-01 (2.82E-03) − 3.160E-01 (2.40E-02) − 3.359E-01 (1.47E-02) − 1.942E-01 (6.90E-03)
7 4.869E-01 (3.03E-02) − 4.322E-01 (2.95E-02) − 4.389E-01 (3.41E-02) − 3.112E-01 (4.93E-03)

Train: +/−/≈ 0/9/0 0/9/0 0/9/0

DTLZ4
3 6.231E-02 (8.85E-02) ≈ 5.590E-02 (5.77E-03) − 6.011E-02 (5.08E-03) − 6.700E-02 (6.14E-02)
5 3.133E-01 (4.45E-02) ≈ 3.457E-01 (1.61E-02) − 3.492E-01 (1.69E-02) − 2.995E-01 (2.10E-02)
7 4.374E-01 (2.57E-02) − 4.552E-01 (1.47E-02) − 4.756E-01 (2.01E-02) − 4.182E-01 (1.21E-02)

WFG5
3 6.327E-02 (1.10E-03) − 6.212E-02 (5.54E-04) − 6.118E-02 (7.03E-04) − 4.730E-02 (7.89E-04)
5 3.350E-01 (9.77E-03) − 3.077E-01 (6.36E-03) − 3.036E-01 (8.83E-03) − 1.811E-01 (3.02E-03)
7 4.101E-01 (2.08E-02) − 4.996E-01 (1.32E-02) − 5.024E-01 (1.38E-02) − 3.206E-01 (8.04E-03)

WFG7
3 5.811E-02 (6.31E-04) − 5.930E-02 (7.32E-04) − 6.014E-02 (7.11E-04) − 4.066E-02 (5.31E-04)
5 3.572E-01 (5.47E-03) − 2.993E-01 (1.43E-02) − 3.207E-01 (1.71E-02) − 1.858E-01 (2.12E-03)
7 5.236E-01 (2.19E-02) − 4.576E-01 (2.38E-02) − 4.879E-01 (2.75E-02) − 3.258E-01 (1.25E-02)

WFG8
3 8.646E-02 (3.44E-03) − 9.280E-02 (1.06E-03) − 9.612E-02 (1.48E-03) − 7.901E-02 (1.19E-03)
5 4.258E-01 (8.42E-03) − 3.969E-01 (1.26E-02) − 3.956E-01 (1.32E-02) − 2.479E-01 (7.20E-03)
7 5.816E-01 (1.30E-02) − 5.575E-01 (1.39E-02) − 5.642E-01 (1.38E-02) − 4.127E-01 (5.93E-03)

WFG9
3 5.817E-02 (1.24E-03) − 5.628E-02 (7.29E-04) − 7.953E-02 (2.45E-02) − 4.159E-02 (6.10E-04)
5 3.633E-01 (1.20E-02) − 3.258E-01 (1.61E-02) − 3.396E-01 (1.55E-02) − 1.832E-01 (7.10E-03)
7 5.538E-01 (2.63E-02) − 5.115E-01 (2.15E-02) − 5.227E-01 (1.79E-02) − 3.278E-01 (7.21E-03)

Test: +/−/≈ 0/13/2 0/15/0 0/15/0

We also compare our algorithm with two adaptive MOEA/D algorithms, i.e., MOEA/D-
FRRMAB [26] and MOEA/D-AWA [37], which adjust reproduction operator types and weights
based on MAB and heuristic rules, respectively. The results clearly show the superior performance of
MA-DAC, and are provided in Appendix B.3 and Appendix B.4 due to space limitation.

RQ2: How is the generalization ability of MA-DAC? We compare MA-DAC policies trained
from different training sets to test the generalization ability of MA-DAC policies. MA-DAC (M)
denotes that the policy is trained on the problems (i.e., DTLZ2, WFG4 and WFG6) with all 3, 5 and 7
objectives. Meanwhile, MA-DAC (3), (5) and (7) denote that the policies are trained on the problems
(i.e., DTLZ2, WFG4 and WFG6) with 3, 5 and 7 objectives, respectively.

As shown in Table 3, it is unsurprising that the results of average rank show that the MA-DAC (3), (5)
and (7) policies have excellent performance on the problems with 3, 5 and 7 objectives, respectively.
For example, MA-DAC (7) has the best average rank (i.e., 1.0) on the test problems with 7 objectives,
but has the worst average rank (i.e., 4.0) on the problems with 3 objectives. To obtain a more robust
policy, we mix the problems with different number of objectives as the training set, resulting in the
MA-DAC (M). As can be seen in Table 3, MA-DAC (M) demonstrates its robustness. Among all the
policies, MA-DAC (M) takes the first, third, and second places in terms of its performance in the three
types of problems, respectively. Lastly, the last row of the table shows the outperformance of these
MA-DAC policies compared with other policies – the IGD values of all the four MA-DAC policies
perform significantly better than the best result obtained by the three peer algorithms MOEA/D, DQN
and MA-UCB in Table 2.

RQ3: How do the different parts of MA-DAC affect the performance? We conduct ablation
studies to show the importance of different types of hyperparameters, and the results are given in
Table 4. We use MA-DAC (M) w/o i to denote the MA-DAC policy that does not include the i-th
agent, and we use a reasonable setting as the default for each ablated agent; the detailed settings are
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Table 3: IGD values obtained by MA-DAC (M), MA-DAC (3), MA-DAC (5) and MA-DAC (7) on different
problems. Each result consists of the mean and standard deviation of 30 runs. The best mean value on each
problem is highlighted in bold. The symbols ‘+’, ‘−’ and ‘≈’ indicate that the result is significantly superior to,
inferior to, and almost equivalent to the best value except for MA-DAC in Table 2, respectively, according to the
Wilcoxon rank-sum test with significance level 0.05.

Problem M MA-DAC (M) MA-DAC (3) MA-DAC (5) MA-DAC (7)

DTLZ2
3 3.839E-02 (5.35E-04) + 3.807E-02 (5.05E-04) + 3.830E-02 (7.24E-04) + 3.837E-02 (5.69E-04) +
5 2.468E-01 (7.55E-03) + 2.472E-01 (1.56E-02) + 2.442E-01 (1.26E-02) + 2.569E-01 (1.39E-02) +
7 3.921E-01 (8.84E-03) + 3.880E-01 (1.02E-02) + 4.081E-01 (1.52E-02) + 3.944E-01 (1.17E-02) +

WFG4
3 5.220E-02 (9.83E-04) + 5.200E-02 (1.19E-03) + 5.236E-02 (1.10E-03) + 5.302E-02 (9.78E-04) +
5 1.850E-01 (3.14E-03) + 1.867E-01 (3.01E-03) + 1.868E-01 (2.81E-03) + 1.853E-01 (2.67E-03) +
7 3.091E-01 (5.80E-03) + 3.104E-01 (7.14E-03) + 3.100E-01 (5.89E-03) + 3.033E-01 (3.66E-03) +

WFG6
3 5.078E-02 (1.20E-02) + 4.831E-02 (8.95E-03) + 4.599E-02 (9.48E-03) + 5.206E-02 (1.64E-02) +
5 1.971E-01 (6.40E-03) + 2.003E-01 (6.26E-03) + 1.942E-01 (6.90E-03) + 1.957E-01 (6.67E-03) +
7 3.114E-01 (5.08E-03) + 3.242E-01 (9.24E-03) + 3.129E-01 (5.71E-03) + 3.112E-01 (4.93E-03) +

DTLZ4
3 6.171E-02 (3.67E-02) + 6.700E-02 (6.14E-02) + 6.618E-02 (4.62E-02) + 8.088E-02 (7.12E-02) +
5 3.044E-01 (1.66E-02) ≈ 2.974E-01 (1.94E-02) + 2.995E-01 (2.10E-02) ≈ 3.036E-01 (1.69E-02) ≈
7 4.271E-01 (1.45E-02) + 4.313E-01 (1.39E-02) ≈ 4.327E-01 (2.15E-02) ≈ 4.182E-01 (1.21E-02) +

WFG5
3 4.721E-02 (7.15E-04) + 4.730E-02 (7.89E-04) + 4.733E-02 (8.10E-04) + 4.746E-02 (5.90E-04) +
5 1.811E-01 (2.59E-03) + 1.817E-01 (2.96E-03) + 1.811E-01 (3.02E-03) + 1.808E-01 (2.83E-03) +
7 3.256E-01 (5.49E-03) + 3.266E-01 (8.98E-03) + 3.263E-01 (9.73E-03) + 3.206E-01 (8.04E-03) +

WFG7
3 4.076E-02 (5.33E-04) + 4.066E-02 (5.31E-04) + 4.077E-02 (5.12E-04) + 4.124E-02 (4.98E-04) +
5 1.839E-01 (2.38E-03) + 1.881E-01 (3.70E-03) + 1.858E-01 (2.12E-03) + 1.836E-01 (2.21E-03) +
7 3.368E-01 (1.54E-02) + 3.461E-01 (1.97E-02) + 3.390E-01 (1.38E-02) + 3.258E-01 (1.25E-02) +

WFG8
3 7.828E-02 (1.46E-03) + 7.901E-02 (1.19E-03) + 7.921E-02 (1.36E-03) + 7.944E-02 (1.30E-03) +
5 2.506E-01 (1.11E-02) + 2.653E-01 (1.51E-02) + 2.479E-01 (7.20E-03) + 2.532E-01 (9.28E-03) +
7 4.303E-01 (1.49E-02) + 4.364E-01 (1.38E-02) + 4.242E-01 (9.08E-03) + 4.127E-01 (5.93E-03) +

WFG9
3 4.324E-02 (7.07E-04) + 4.159E-02 (6.10E-04) + 4.359E-02 (1.00E-02) + 6.415E-02 (2.64E-02) +
5 1.858E-01 (7.63E-03) + 1.814E-01 (4.59E-03) + 1.832E-01 (7.10E-03) + 1.918E-01 (1.13E-02) +
7 3.328E-01 (1.02E-02) + 3.298E-01 (1.03E-02) + 3.307E-01 (1.37E-02) + 3.278E-01 (7.21E-03) +

Test: average rank
3 1.4 1.8 2.8 4.0
5 2.6 2.8 2.2 2.4
7 2.6 3.4 3.0 1.0

Test: +/−/≈
3 5/0/0 5/0/0 5/0/0 5/0/0
5 4/0/1 5/0/0 4/0/1 4/0/1
7 5/0/0 4/0/1 4/0/1 5/0/0

provided in Appendix B.1. That is, MA-DAC (M) w/o 1, 2, 3 and 4 represent MA-DAC (M) without
tuning weights, neighborhood size, types of reproduction operators, and parameters of reproduction
operators, respectively.

As can be seen in Table 4. MA-DAC (M) outperforms all the ablations, demonstrating the importance
of tuning every type of hyperparameter. Note that the column of MA-DAC (M) in Table 4 is just as
same as that in Table 3. On the other hand, we notice that the importance of hyperparameters varies.
For example, adaptive weights are in general more important as the performance of MA-DAC (M)
w/o 1 drops significantly.

Further studies Due to the space limitation, more experiments on MaMo and DACBench [12] are
provided in Appendix B and Appendix C, respectively.

• To show the effectiveness of the proposed triangle-based reward function, we compare it
with different reward functions in Appendix B.2.

• We give a detailed analysis of the reproduction operators and the adaptive weights in
Appendix B.3 and Appendix B.4, respectively.

• To show the optimization process of each method, we plot the curves of IGD value of
different methods (i.e., MOEA/D, MOEA/D-FRRMAB, MOEA/D-AWA, DQN, MA-UCB
and MA-DAC) in Appendix B.5.

• To improve the compared baseline, we use DQN to dynamically adjust each type of hyper-
parameter of MOEA/D in Appendix B.6.

• We use two more MARL algorithms as the implementations of policy networks, i.e., Inde-
pendent Q Learning (IQL) [47] and QMIX [38] in Appendix B.7.
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Table 4: IGD values obtained by MA-DAC (M) w/o 1, MA-DAC (M) w/o 2, MA-DAC (M) w/o 3 and MA-DAC
(M) w/o 4 on different problems. Each result consists of the mean and standard deviation of 30 runs. The best
mean value on each problem is highlighted in bold. The symbols ‘+’, ‘−’ and ‘≈’ indicate that the result
is significantly superior to, inferior to, and almost equivalent to MA-DAC (M), respectively, according to the
Wilcoxon rank-sum test with significance level 0.05.

Problem M MA-DAC (M) w/o 1 MA-DAC (M) w/o 2 MA-DAC (M) w/o 3 MA-DAC (M) w/o 4 MA-DAC (M)

DTLZ2
3 4.656E-02 (3.80E-04) − 3.914E-02 (8.43E-04) − 3.935E-02 (6.72E-04) − 3.919E-02 (5.91E-04) − 3.839E-02 (5.35E-04)
5 3.086E-01 (7.24E-03) − 2.619E-01 (8.99E-03) − 2.503E-01 (1.30E-02) − 2.433E-01 (1.59E-02) ≈ 2.468E-01 (7.55E-03)
7 4.970E-01 (1.26E-02) − 4.067E-01 (1.20E-02) − 4.003E-01 (1.19E-02) − 4.228E-01 (1.25E-02) − 3.921E-01 (8.84E-03)

WFG4
3 7.222E-02 (1.93E-03) − 5.484E-02 (1.01E-03) − 5.410E-02 (8.85E-04) − 5.410E-02 (8.85E-04) − 5.220E-02 (9.83E-04)
5 2.868E-01 (1.01E-02) − 1.879E-01 (3.76E-03) ≈ 1.845E-01 (2.17E-03) + 1.846E-01 (2.39E-03) + 1.850E-01 (3.14E-03)
7 3.758E-01 (1.33E-02) − 3.102E-01 (6.34E-03) − 3.020E-01 (3.99E-03) ≈ 3.032E-01 (4.32E-03) ≈ 3.091E-01 (5.80E-03)

WFG6
3 6.864E-02 (8.14E-03) − 5.338E-02 (1.37E-02) − 6.543E-02 (1.69E-02) − 6.067E-02 (2.11E-02) ≈ 5.078E-02 (1.20E-02)
5 3.480E-01 (1.34E-02) − 2.005E-01 (5.21E-03) − 1.996E-01 (6.51E-03) − 1.979E-01 (6.76E-03) − 1.971E-01 (6.40E-03)
7 4.784E-01 (3.37E-02) − 3.147E-01 (5.85E-03) − 3.162E-01 (6.15E-03) − 3.147E-01 (5.73E-03) − 3.114E-01 (5.08E-03)

Train: +/−/≈ 0/9/0 0/8/1 1/7/1 1/5/3

DTLZ4
3 6.463E-02 (3.85E-02) − 6.242E-02 (4.07E-02) − 4.496E-02 (2.45E-03) + 4.496E-02 (2.45E-03) + 6.171E-02 (3.67E-02)
5 3.497E-01 (1.41E-02) − 3.061E-01 (2.12E-02) ≈ 3.054E-01 (1.55E-02) ≈ 3.130E-01 (1.81E-02) − 3.044E-01 (1.66E-02)
7 4.853E-01 (1.82E-02) − 4.275E-01 (1.90E-02) − 4.208E-01 (1.52E-02) ≈ 4.289E-01 (2.07E-02) − 4.271E-01 (1.45E-02)

WFG5
3 6.189E-02 (7.40E-04) − 4.827E-02 (6.31E-04) − 4.766E-02 (5.72E-04) ≈ 4.766E-02 (5.72E-04) ≈ 4.721E-02 (7.15E-04)
5 3.202E-01 (9.77E-03) − 1.821E-01 (2.73E-03) ≈ 1.835E-01 (2.90E-03) − 1.822E-01 (2.31E-03) − 1.811E-01 (2.59E-03)
7 4.948E-01 (1.47E-02) − 3.290E-01 (8.87E-03) − 3.310E-01 (7.70E-03) − 3.261E-01 (9.26E-03) − 3.256E-01 (5.49E-03)

WFG7
3 6.004E-02 (9.45E-04) − 4.250E-02 (5.82E-04) − 4.150E-02 (6.60E-04) − 4.150E-02 (6.60E-04) − 4.076E-02 (5.33E-04)
5 3.402E-01 (2.49E-02) − 1.873E-01 (3.67E-03) ≈ 1.826E-01 (2.60E-03) + 1.847E-01 (2.80E-03) ≈ 1.839E-01 (2.38E-03)
7 4.877E-01 (5.70E-02) − 3.393E-01 (1.23E-02) − 3.373E-01 (1.16E-02) − 3.377E-01 (1.59E-02) − 3.368E-01 (1.54E-02)

WFG8
3 9.661E-02 (1.87E-03) − 8.374E-02 (1.70E-03) − 8.029E-02 (1.29E-03) − 8.029E-02 (1.29E-03) − 7.828E-02 (1.46E-03)
5 4.119E-01 (1.30E-02) − 2.695E-01 (1.49E-02) − 2.571E-01 (1.09E-02) − 2.632E-01 (9.96E-03) − 2.506E-01 (1.11E-02)
7 5.830E-01 (1.59E-02) − 4.345E-01 (9.27E-03) − 4.260E-01 (8.71E-03) − 4.322E-01 (1.12E-02) − 4.303E-01 (1.49E-02)

WFG9
3 5.894E-02 (9.24E-04) − 4.321E-02 (7.50E-04) − 4.650E-02 (1.40E-02) − 4.650E-02 (1.40E-02) − 4.324E-02 (7.07E-04)
5 3.148E-01 (2.06E-02) − 1.875E-01 (5.14E-03) − 1.941E-01 (6.45E-03) − 1.865E-01 (9.02E-03) − 1.858E-01 (7.63E-03)
7 5.069E-01 (2.53E-02) − 3.433E-01 (1.35E-02) − 3.402E-01 (1.00E-02) − 3.368E-01 (1.05E-02) − 3.328E-01 (1.02E-02)

Test: +/−/≈ 0/15/0 0/12/3 2/10/3 1/12/2

• We also conduct experiments on Sigmoid from DACBench [12] in Appendix C, which can
generate instance sets with a wide range of difficulties. We conduct experiments on the
5D-Sigmoid and 10D-Sigmoid (i.e., there are 5 and 10 agents in MA-DAC, respectively)
with action space size 3 (i.e., each agent has a 3-dimensional discrete action space). The
experimental results show the versatility and scalability of MA-DAC.

6 Conclusion

This paper considers the dynamic configuration of algorithms with multiple types of hyperparameters.
We propose MA-DAC to solve it, where one agent works to handle one type of configuration
hyperparameter. Experimental results show that MA-DAC works well and has good generalization
ability. The instantiation of configuring MOEA/D forms the benchmark MaMo for MARL, with the
hope of facilitating the application of MARL.

Considering the superior performance of MA-DAC in many empirical studies, a very interesting future
work is to perform theoretical analysis, to better understand why MA-DAC can work. Particularly,
many MARL algorithms follow the IGM principle that assumes the global Q is factorizable, while it is
not yet clear whether DAC problems are (approximately) factorizable and if using MARL rather than
single-agent RL has more advantages. In addition, we will try to propose better contextual MMDP
formulation and better cooperative MARL algorithms based on the heterogeneity and stochasticity of
MA-DAC. It is also interesting to include more real-world optimization problems into MaMo.
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A Details of MA-DAC

A.1 Details of MOEA/D

First, we give a brief introduction to multi-objective optimization problems (MOPs), which can be
defined as

min F (x) = (f1(x), . . . , fm(x)) s.t. x ∈ Ω, (5)

where x = (x1, . . . , xD) is a solution, F : Ω → Rm constitutes m objective functions, Ω =
[xL

i , x
U
i ]

D ⊆ RD is the solution space, and Rm is the objective space.
Definition A.1. A solution x∗ is Pareto-optimal with respect to Eq. (5), if ∄x ∈ Ω such that
∀i : fi(x) ≤ fi(x

∗) and ∃i : fi(x) < fi(x
∗). The set of all Pareto-optimal solutions is called

Pareto-optimal set (PS). The set of the corresponding objective vectors of PS, i.e., {F (x) | x ∈ PS},
is called Pareto front (PF).

Instead of focusing on a single optimal solution in single-objective optimization, the goal of MOP is
to find at least one Pareto-optimal solution for each objective vector in the PF. However, as the size of
PF can be prohibitively large or even infinite, it is often to find a set of solutions that can approximate
the PS well, i.e., the set of their objective vectors can approximate the PF well.

Evolutionary algorithms have demonstrated their effectiveness in solving MOPs. Their population-
based nature can approximate the Pareto optimal solutions within one execution, with each solution in
the population representing a unique trade-off among the objectives. MOEA/D [59] is a representative
multi-objective evolutionary algorithm. MOEA/D converts an MOP into a number of single-objective
sub-problems through a number of weights, where neighboring solutions work cooperatively for
the optimal solutions for the single-objective sub-problems. Note that an optimal solution for a
single-objective sub-problem must be Pareto optimal for the MOP.

MOEA/D consists of two major processes, i.e., decomposition and collaboration [59, 51, 25]. In
decomposition, MOEA/D transforms the task of approximating the PF into a number of sub-problems
through a number of weights and an aggregation function. There have been several aggregation
functions for MOEA/D. Here, we introduce the common Tchebycheff approach (TCH) that is also
used in this paper. Given a weight vector w = (w1, . . . , wm) where wi ≥ 0,∀i ∈ {1, . . . ,m} and∑m

i=1 wi = 1, the sub-problem by TCH is formulated as

min
x∈Ω

g(x | w, z∗) = max
1≤i≤m

{wi · |fi(x)− z∗i |}, (6)

where z∗ = (z∗1 , . . . , z
∗
m) is the ideal point consisting of the best objective values obtained so far.

The basic idea of collaboration is that neighboring sub-problems are more likely to share similar
properties, e.g., similar objective functions and/or optimal solutions [25]. In particular, the neighbor-
hood of a sub-problem is determined by the Euclidean distance of its corresponding weight vector
with respect to the others and the hyperparameter neighborhood size: if the distance between two
sub-problems is smaller than the neighborhood size, they are the neighborhood of each other. In the
mating selection of a sub-problem, the parent solutions are randomly selected from its neighborhood,
and the newly generated offspring solution is used to update the solutions of sub-problems within the
same neighborhood.

The procedure of MOEA/D used in this paper is described in Algorithm 1. Firstly, it generates a
population {x(i)}Ni=1 of solutions with size N , associated with N weight vectors {w(i)}Ni=1 in line 1.
A weight vector w(i) corresponds to a single-objective sub-problem, and x(i) is the current best
solution associated with this sub-problem. Then, in each iteration (i.e., lines 4–10) of MOEA/D,
for each sub-problem, it selects parent solutions from the neighborhood, generates an offspring
solution by reproduction operators, and updates the solutions of the sub-problem and its neighboring
sub-problem(s). After obtaining parent solutions in line 5, it uses crossover operators (e.g., simulated
binary crossover (SBX) operator or differential evolution (DE) operator) and polynomial mutation
(PM) operator [59], to generate an offspring solution x′(i) in line 6. Then, it evaluates the offspring
solution and obtain the objective vector F (x′(i)) in line 7. Finally, it uses the offspring solution to
update the ideal point z∗ in line 8 and the solutions of the sub-problems within the neighborhood
Θw(i)

of the current sub-problem w(i) in line 9. For each j ∈ {1, 2, . . . ,m}, z∗j is the best found
value of the j-th objective fj , and thus if fj(x′(i)) is better, i.e., fj(x′(i)) < z∗j , then z∗j will be
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Algorithm 1: MOEA/D
Parameters: Population size N , number T of iterations

1 Initialize a population {x(i)}Ni=1 of solutions, and a corresponding set W = {w(i)}Ni=1 of weight
vectors ;

2 t = 0 ;
3 while t < T do
4 for i = 1 : N do
5 Randomly select parent solutions from the neighborhood of w(i) , denoted as Θw(i)

;
6 Use crossover and mutation operators to generate an offspring solution x′(i);
7 Evaluate the offspring solution to obtain F (x′(i));
8 Update the ideal point z∗. That is, for any j ∈ {1, 2, . . . ,m}, if fj(x′(i)) < z∗

j , then
z∗
j = fj(x

′(i));

9 Update the corresponding solution of each sub-problem within Θw(i)

by x′(i). That is,
for each w(j) ∈ Θw(i)

, if g(x′(i) | w(j), z∗) < g(x(j) | w(j), z∗), then x(j) = x′(i)

10 end
11 t = t+ 1
12 end

udpated accordingly. For each sub-problem w(j) within Θw(i)

, if x′(i) is better than its corresponding
solution x(j), i.e., g(x′(i) | w(j), z∗) < g(x(j) | w(j), z∗), then x(j) will be udpated accordingly.

A.2 State formulation

The state of our proposed benchmark, i.e., MaMo, can be divided into three parts.

1. To describe the general properties of the optimization problems, the first part (i.e., indexes 0–
1 in Table 5) contains the features of the problem instance, i.e., the numbers of objectives
and variables.

2. To emphasize the general information of the algorithm, the second part (i.e., indexes 2–3 in
Table 5) contains the features of the optimization process, i.e., how much computational
budget has been used and how many steps of the algorithm have not made any progress, i.e.,
stagnant count ratio.

3. To show the properties of the population and that how the population is evolved, we use
several indicators, i.e., hypervolume [61], ratio of non-dominated solutions in the population,
and average distance of the solutions [27] in the third part (i.e., indexes 4–21 in Table 5). For
each indicator, we also use the gap between the current value and the value corresponding to
the last population to reflect the immediate evolutionary progress. Besides, we use statistic
metrics (i.e., the mean and standard deviation) of these indicators in the last five steps and
all steps from the beginning to characterize the short and long histories of the optimization,
respectively.

The detailed state features at step t are shown in Table 5. We use List(I, t, l) to denote a list of
indicator values from step t− l + 1 to t, i.e., [It−l+1, . . . , It], where I denotes a specific indicator
and Ii denotes the indicator value at step i. Note that ∀i < 0, Ii = 0 as default. For the considered
three indicators, i.e., hypervolume, ratio of non-dominated solutions in the population and average
distance of the solutions, they are denoted as HV, NDRatio and Dist, respectively.

To facilitate the generalization of the learned MA-DAC policy, we pre-process some state features
to make them in [−1, 1]. For state features 0 and 1, we use 1/m and 1/D, respectively, where m is
the number of objectives and D is the number of variables. They apparently belong to [0, 1]. For
state features 2, 3, 4 and 5, they are defined in [0, 1]. State feature 6 is the average distance between
the solutions in the population. We sample a sufficient number of solutions before optimization,
and calculate the maximum distance between them, which is used as a scaling denominator when
calculating state feature 6. State features 7-9 are the difference of two values in [0, 1], and thus belong
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Table 5: State at step t in MaMo.

Index Parts of state Feature Notes

0 1 1/m m: Number of objectives
1 1 1/D D: Number of variables

2 2 t/T Computational budget that has been used
3 2 Nstag/T Stagnant count ratio

4 3 HVt Hypervolume value
5 3 NDRatiot Ratio of non-dominated solutions
6 3 Distt Average distance

7 3 HVt −HVt−1 Change of HV between steps t and t− 1
8 3 NDRatiot −NDRatiot−1 Change of NDRatio between steps t and t− 1
9 3 Distt −Distt−1 Change of Dist between steps t and t− 1

10 3 Mean(List(HV, t, 5)) Mean of HV in the last 5 steps
11 3 Mean(List(NDRatio, t, 5)) Mean of NDRatio in the last 5 steps
12 3 Mean(List(Dist, t, 5)) Mean of Dist in the last 5 steps
13 3 Std(List(HV, t, 5)) Standard deviation of HV in the last 5 steps
14 3 Std(List(NDRatio, t, 5)) Standard deviation of NDRatio in the last 5 steps
15 3 Std(List(Dist, t, 5)) Standard deviation of Dist in the last 5 steps

16 3 Mean(List(HV, t, t)) Mean of HV in all the steps so far
17 3 Mean(List(NDRatio, t, t)) Mean of NDRatio in all the steps so far
18 3 Mean(List(Dist, t, t)) Mean of Dist in all the steps so far
19 3 Std(List(HV, t, t)) Standard deviation of HV in all the steps so far
20 3 Std(List(NDRatio, t, t)) Standard deviation of NDRatio in all the steps so far
21 3 Std(List(Dist, t, t)) Standard deviation of Dist in all the steps so far

to [−1, 1]. For state features 10-21, they are statistical values (i.e., mean and standard deviation) of
state features 4-6.

A.3 Action formulation

We consider four heterogeneous types of configuration hyperparameters in MOEA/D as the actions
of four different agents of MA-DAC.

Weights. In MOEA/D, weights are used to transform an MOP into multiple single-objective sub-
problems, which should be as diverse as possible [59]. Inspired by MOEA/D-AWA [37], the action
space for weights is discrete with two dimensions, i.e., adjusting (T) and not adjusting (N) the weights.
Furthermore, we limit the frequency of adjustment because too frequent adjustment will lead to
drastic changes in the sub-problems and is detrimental to the optimization process [37]. If the action
is T, weights will be updated before selecting the parent solutions. The weights adaptation mechanism
is as follows.

We first calculate the sparsity level of each solution x(i) based on vicinity distance [24]:

SL
(
x(i), {x(p)}Np=1

)
=

m∏
j=1

l(x(i), j), (7)

where l(x(i), j) is the Euclidean distance between x(i) and its j-th nearest neighbor in the population
{x(p)}Np=1. The m closest neighbors in the population are used for calculation, where m is the number
of objectives. After calculating the sparsity level of each solution, the sub-problems corresponding to
the solutions whose sparsity levels are ranked bottom 5%, i.e., the overcrowded solutions, will be
removed.

To ensure that there are still N sub-problems in total, we should add 0.05N new sub-problems and
their corresponding solutions. The newly added solutions are from an elite population, which stores
all historical non-dominated solutions with a capacity of 1.5N . If the size of the elite population
exceeds the capacity, the solutions with the lowest sparsity level will be removed. For each solution
x′ in the elite population, we calculate its sparsity level with respect to the current population, i.e.,
SL(x′,Pop), where Pop denotes the set of 0.95N solutions in the current population after removing
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the overcrowded solutions. Then, we select the solution from the elite population, which has the
highest sparsity level with respect to the current population, and add it to the current population; this
process is repeated for 0.05N times. For each newly added solution, the corresponding sub-problem
(i.e., weight vector) is generated in a specific way, whose details can refer to Algorithm 3 in [37].

Neighborhood size. The neighborhood size is to control the distance between solutions in mating
selection. A small size helps the search exploit the local area, while a large size helps the search
explore a wide objective space [54]. We discretize the action space into four dimensions, i.e., 15, 20,
25 and 30, where 20 is the default value.

Types of reproduction operators. We consider four types of DE operators with different search
abilities introduced in [26]. Assuming that we are reproducing an offspring solution for the i-th
sub-problem. Let x(i) and x′(i) denote its current solution and the generated offspring solution,
respectively. The equations of four types of DE operators are shown as follows:

• OP1: x′(i) = x(i) + F ×
(
x(r1) − x(r2)

)
,

• OP2: x′(i) = x(i) + F ×
(
x(r1) − x(r2)

)
+ F ×

(
x(r3) − x(r4)

)
,

• OP3: x′(i) = x(i) +K ×
(
x(i) − x(r1)

)
+ F ×

(
x(r2) − x(r3)

)
+ F ×

(
x(r4) − x(r5)

)
,

• OP4: x′(i) = x(i) +K ×
(
x(i) − x(r1)

)
+ F ×

(
x(r2) − x(r3)

)
.

Here, x(r1),x(r2),x(r3),x(r4), and x(r5) are different parent solutions randomly selected from the
neighborhood of x(i). The scaling factor F > 0 controls the impact of the vector differences on the
mutant vector, and K ∈ [0, 1] plays a similar role to F .

Parameters of reproduction operators. The parameters (e.g., scaling factor) of the reproduction
operators in MOEA/D significantly affect the algorithm’s performance [45]. We set the scaling factor
K to a fixed value of 0.5 as recommended [26], and dynamically adjust the scaling factor F . The
action space has four discrete dimensions, i.e., 0.4, 0.5, 0.6 and 0.7, where 0.5 is the default value.

B Additional results on MaMo

B.1 Details of experimental settings

Common settings of MOEA/D We implement MOEA/D with Platypus.3 All algorithms
mentioned in this paper use the same common settings [59, 50], as shown in Table 6.

Table 6: Common Settings of MOEA/D.

General settings

Population size N 210
Number T of iterations 100×m

Reproduction operators

Crossover operator Simulated binary crossover (SBX)
Distribution index of SBX 20

Mutation operator Polynomial mutation (PM)
Probability of PM 1/D

Distribution index of PM 20

Aggregation function

Aggregation function Tchebycheff approach
Neighborhood size 20

3https://github.com/Project-Platypus/Platypus

19

https://github.com/Project-Platypus/Platypus


DQN We implement DQN with the tianshou4 [55] framework and adjust some of the hyperpa-
rameters to fit this new task. The network structure is:

state → MLP(128) → relu → MLP(128) → relu → MLP(128)
→ relu → MLP(number of actions)

where MLP(n) means a fully-connected layer with output size of n, and relu means Rectified Linear
Units. Here, the action apace is the concatenation of the four types of configuration hyperparameters,
with a dimension of 128 (i.e., 4× 4× 4× 2). Some key hyperparameters of DQN are as follows:

• The learning rate is 3e-4.
• The discounting factor γ is 0.99.
• The buffer size is 50, 000 (where unit is transition).
• The number of training steps is 400, 000.

MA-UCB MA-UCB uses four upper confidence bound (UCB) [2] agents to adjust the four types
of hyperparameters [17]. Each agent follows the UCB action selection rule, i.e., the action taken by
agent i at step t is

a
(i)
t

.
= argmax

a(i)

[
Qt(a

(i)) + c

√
ln t

Nt(a(i))

]
, (8)

where Qt(a
(i)) denotes the estimated value of a(i) at step t, Nt(a

(i)) denotes the number of times
that action a(i) has been selected at step t, and the number c > 0 (the value is 1.0 here) controls the
degree of exploration.

MOEA/D-FRRMAB We modify the implementation of FRRMAB from the PlatEMO5 [49]
framework to make a fair comparison. That is, the original adaptive operator selection mechanism
and related hyperparameters are retained, except that it uses the same settings of MOEA/D as MA-
DAC. MOEA/D-FRRMAB adjusts the four types of DE operators by MAB. In particular, we searched
for some sensitive hyperparameters according to the suggestions in [26], and the best performing
combination is shown as follows:

• Scaling factor is 2.0.
• Size of the sliding window is 0.5×N .
• Decaying factor is 0.3.

MOEA/D-AWA We modify the implementation of MOEA/D-AWA from the PlatEMO framework
to make a fair comparison. That is, the original adaptive weight vector adjustment strategy and related
hyperparameters are retained, except that it uses the same settings of MOEA/D as MA-DAC.

MA-DAC We use the default VDN policy network without parameter sharing in the EPyMARL6 [36]
framework. MA-DAC and all its variants use the same hyperparameters. Some key hyperparameters
are as follows:

• The learning rate is 1e-4.
• The discounting factor γ is 0.99.
• The buffer size is 5, 000 (where unit is episode).
• The number of training steps is 400, 000.

All hyperparameters of the above algorithms can be found in the code.

Computing resources The experiments are conducted on six PCs with an AMD Ryzen 9 3950X
16-Core Processor and an NVIDIA GeForce RTX 3090 GPU.

4https://github.com/thu-ml/tianshou
5https://github.com/BIMK/PlatEMO
6https://github.com/uoe-agents/epymarl
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B.2 Analysis of the reward function

In this subsection, we compare our proposed reward function with the three types of reward functions
proposed by [42], as shown in the following:

r1t =max{f(st)− f(st+1), 0}, (9)

r2t =


10 if f(st+1) < f∗

t

1 else if f(st+1) < f(st)

0 otherwise
, (10)

r3t =max

{
f(st)− f(st+1)

f(st+1)− fopt
, 0

}
, (11)

where f(st) is the metric value at step t, f∗
t is the minimum metric value achieved until step t, and

fopt is the optimal metric value, i.e., the global minimum value. Here, we use IGD [6] as the metric
f(·), and thus fopt = 0. We train MA-DAC policy with these three reward functions r1t , r2t and r3t ,
which are denoted as MA-DAC-R1, MA-DAC-R2 and MA-DAC-R3, respectively.

The experimental results are shown in Table 7. We can see that MA-DAC has the best average rank,
indicating the effectiveness of our proposed reward function. For the other three methods, MA-
DAC-R2 and MA-DAC-R3 are better than MA-DAC-R1, which is consistent with the observation
in [42].

Table 7: IGD values obtained by MA-DAC-R1, MA-DAC-R2, MA-DAC-R3 and MA-DAC on different problems.
Each result consists of the mean and standard deviation of 30 runs. The best mean value on each problem is
highlighted in bold. The symbols ‘+’, ‘−’ and ‘≈’ indicate that the result is significantly superior to, inferior
to, and almost equivalent to MA-DAC, respectively, according to the Wilcoxon rank-sum test with significance
level 0.05.

Problem M MA-DAC-R1 MA-DAC-R2 MA-DAC-R3 MA-DAC

DTLZ2
3 4.223E-02 (2.50E-03) − 3.853E-02 (5.58E-04) − 3.809E-02 (4.64E-04) ≈ 3.807E-02 (5.05E-04)
5 2.401E-01 (8.27E-03) − 2.726E-01 (1.51E-02) ≈ 2.364E-01 (1.04E-02) + 2.442E-01 (1.26E-02)
7 4.142E-01 (1.12E-02) − 4.248E-01 (1.30E-02) − 4.215E-01 (9.03E-03) − 3.944E-01 (1.17E-02)

WFG4
3 5.989E-02 (5.60E-03) ≈ 5.255E-02 (1.14E-03) − 5.309E-02 (8.02E-04) − 5.200E-02 (1.19E-03)
5 1.848E-01 (2.61E-03) + 1.851E-01 (2.43E-03) + 1.846E-01 (2.20E-03) + 1.868E-01 (2.81E-03)
7 3.028E-01 (3.19E-03) + 3.008E-01 (3.51E-03) ≈ 3.029E-01 (3.36E-03) ≈ 3.033E-01 (3.66E-03)

WFG6
3 7.920E-02 (1.81E-02) + 4.909E-02 (1.50E-02) − 4.814E-02 (1.22E-02) ≈ 4.831E-02 (8.95E-03)
5 1.977E-01 (6.17E-03) − 2.037E-01 (4.49E-03) − 1.975E-01 (5.78E-03) − 1.942E-01 (6.90E-03)
7 3.110E-01 (4.86E-03) − 3.151E-01 (5.01E-03) ≈ 3.148E-01 (4.05E-03) − 3.112E-01 (4.93E-03)

Train: average rank 2.67 3.11 2.11 2.11

Train: +/−/≈ 3/5/1 1/5/3 2/4/3

DTLZ4
3 5.567E-02 (7.33E-03) − 7.236E-02 (6.19E-02) − 6.144E-02 (5.10E-02) ≈ 6.700E-02 (6.14E-02)
5 3.119E-01 (1.91E-02) − 3.221E-01 (2.12E-02) − 3.119E-01 (1.58E-02) − 2.995E-01 (2.10E-02)
7 4.354E-01 (1.29E-02) − 4.385E-01 (1.23E-02) − 4.275E-01 (1.60E-02) − 4.182E-01 (1.21E-02)

WFG5
3 4.841E-02 (7.78E-04) − 4.763E-02 (7.73E-04) − 4.773E-02 (6.58E-04) − 4.730E-02 (7.89E-04)
5 1.823E-01 (2.49E-03) ≈ 1.818E-01 (2.90E-03) − 1.812E-01 (3.06E-03) ≈ 1.811E-01 (3.02E-03)
7 3.212E-01 (6.60E-03) ≈ 3.174E-01 (6.43E-03) ≈ 3.196E-01 (5.99E-03) ≈ 3.206E-01 (8.04E-03)

WFG7
3 4.555E-02 (1.26E-03) ≈ 4.076E-02 (5.41E-04) − 4.168E-02 (6.40E-04) − 4.066E-02 (5.31E-04)
5 1.842E-01 (3.28E-03) ≈ 1.865E-01 (2.93E-03) + 1.841E-01 (3.95E-03) + 1.858E-01 (2.12E-03)
7 3.335E-01 (1.09E-02) + 3.199E-01 (9.86E-03) − 3.271E-01 (9.65E-03) ≈ 3.258E-01 (1.25E-02)

WFG8
3 8.914E-02 (2.96E-03) ≈ 7.911E-02 (1.06E-03) − 8.199E-02 (1.96E-03) − 7.901E-02 (1.19E-03)
5 2.551E-01 (1.02E-02) − 2.628E-01 (1.22E-02) − 2.541E-01 (9.08E-03) − 2.479E-01 (7.20E-03)
7 4.163E-01 (9.54E-03) ≈ 4.115E-01 (9.80E-03) ≈ 4.197E-01 (7.52E-03) − 4.127E-01 (5.93E-03)

WFG9
3 5.003E-02 (9.00E-03) − 4.208E-02 (6.56E-04) − 4.428E-02 (9.97E-03) − 4.159E-02 (6.10E-04)
5 1.929E-01 (8.84E-03) ≈ 1.819E-01 (5.73E-03) − 1.951E-01 (9.83E-03) − 1.832E-01 (7.10E-03)
7 3.342E-01 (8.56E-03) − 3.322E-01 (8.89E-03) − 3.327E-01 (8.02E-03) − 3.278E-01 (7.21E-03)

Test: average rank 3.27 2.47 2.67 1.60

Test: +/−/≈ 1/7/7 1/12/2 1/10/4
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B.3 Analysis of the reproduction operators

In this subsection, we give a detailed analysis of the reproduction operators, including the four types
of DE operators introduced in Appendix A.3, and also further compare MA-DAC with MOEA/D-
FRRMAB, which applies the MAB-based adaptive tuning method FRRMAB [26] to dynamically
adjust the types of DE operators used in MOEA/D.

First, we examine the performance of MOEA/D equipped with each type of DE operator, where the
DE operator is used as the crossover operator with a default scaling factor F = 0.5. The results are
shown in Table 8. Compared with the original MOEA/D using the SBX operator, these methods using
the DE operator achieve a similar performance, as the numbers of ‘+’ and ‘−’ are close. Among
the methods using the DE operator, MOEA/D-OP2 has the best average rank, which has thus also
been used as the default DE operator in MA-DAC (M) w/o 3. Note that MA-DAC (M) w/o 3 denotes
MA-DAC (M) without tuning the types of reproduction operators, which is used to validate the
effectiveness of adjusting all configuration hyperparameters simultaneously in RQ3 of the main paper.

Table 8: IGD values obtained by MOEA/D-OP1, MOEA/D-OP2, MOEA/D-OP3 and MOEA/D-OP4 on different
problems. Each result consists of the mean and standard deviation of 30 runs. The best mean value on each
problem is highlighted in bold. The symbols ‘+’, ‘−’ and ‘≈’ indicate that the result is significantly superior to,
inferior to, and almost equivalent to the original MOEA/D (i.e., the column MOEA/D in Table 2 of the main
paper or Table 9), respectively, according to the Wilcoxon rank-sum test with significance level 0.05.

Problem M MOEA/D-OP1 MOEA/D-OP2 MOEA/D-OP3 MOEA/D-OP4

DTLZ2
3 4.681E-02 (2.95E-04) − 4.691E-02 (3.97E-04) − 6.050E-02 (2.64E-03) − 5.033E-02 (1.07E-03) −
5 3.037E-01 (9.85E-04) − 3.012E-01 (1.51E-03) ≈ 3.391E-01 (1.06E-02) − 3.083E-01 (2.69E-03) −
7 4.735E-01 (9.68E-03) − 4.551E-01 (4.43E-03) − 4.988E-01 (1.01E-02) − 4.887E-01 (9.51E-03) −

WFG4
3 6.934E-02 (1.54E-03) − 7.293E-02 (1.43E-03) − 9.046E-02 (4.01E-03) − 7.998E-02 (2.25E-03) −
5 2.930E-01 (1.03E-02) + 2.761E-01 (6.39E-03) + 2.762E-01 (5.86E-03) + 2.761E-01 (7.63E-03) +
7 4.057E-01 (1.45E-02) + 3.711E-01 (9.79E-03) + 3.617E-01 (6.46E-03) + 3.696E-01 (1.06E-02) +

WFG6
3 7.470E-02 (2.22E-02) + 6.714E-02 (1.59E-02) + 7.665E-02 (9.41E-03) − 9.557E-02 (1.71E-02) −
5 3.513E-01 (1.46E-02) + 3.285E-01 (2.33E-02) + 3.254E-01 (1.39E-02) + 3.421E-01 (1.30E-02) +
7 4.918E-01 (3.31E-02) ≈ 4.797E-01 (3.04E-02) ≈ 4.328E-01 (2.81E-02) + 4.478E-01 (3.08E-02) +

DTLZ4
3 7.897E-02 (6.36E-02) − 6.226E-02 (4.05E-03) − 1.296E-01 (1.23E-02) − 7.890E-02 (9.62E-03) −
5 3.504E-01 (2.77E-02) − 3.413E-01 (1.48E-02) − 3.631E-01 (7.24E-03) − 3.521E-01 (1.23E-02) −
7 4.923E-01 (1.89E-02) − 4.519E-01 (1.15E-02) − 4.766E-01 (1.35E-02) − 4.975E-01 (2.23E-02) −

WFG5
3 6.181E-02 (5.85E-04) + 6.177E-02 (8.01E-04) + 6.128E-02 (5.59E-04) + 6.113E-02 (5.30E-04) +
5 3.138E-01 (6.20E-03) + 3.052E-01 (7.19E-03) + 3.031E-01 (7.37E-03) + 3.116E-01 (8.26E-03) +
7 4.945E-01 (1.24E-02) − 4.988E-01 (1.04E-02) − 5.197E-01 (1.01E-02) − 5.189E-01 (1.22E-02) −

WFG7
3 5.929E-02 (6.35E-04) − 6.033E-02 (8.84E-04) − 8.382E-02 (4.86E-03) − 6.699E-02 (1.75E-03) −
5 3.286E-01 (1.55E-02) + 2.941E-01 (9.66E-03) + 2.924E-01 (1.12E-02) + 3.148E-01 (1.58E-02) +
7 5.062E-01 (2.46E-02) + 4.739E-01 (2.51E-02) + 4.479E-01 (2.28E-02) + 4.859E-01 (2.72E-02) +

WFG8
3 9.314E-02 (9.12E-04) − 9.598E-02 (1.22E-03) − 1.213E-01 (3.36E-03) − 1.070E-01 (2.16E-03) −
5 4.112E-01 (1.14E-02) + 3.884E-01 (1.19E-02) + 3.808E-01 (7.26E-03) + 3.925E-01 (1.33E-02) +
7 5.743E-01 (1.09E-02) + 5.587E-01 (1.56E-02) + 5.564E-01 (1.13E-02) + 5.570E-01 (1.22E-02) +

WFG9
3 5.993E-02 (1.32E-02) + 8.122E-02 (2.54E-02) − 8.912E-02 (1.83E-02) − 8.652E-02 (2.15E-02) −
5 3.246E-01 (1.54E-02) + 3.300E-01 (1.47E-02) + 3.325E-01 (1.63E-02) + 3.389E-01 (1.18E-02) +
7 5.179E-01 (2.68E-02) + 5.001E-01 (2.59E-02) + 5.252E-01 (2.03E-02) + 5.472E-01 (2.12E-02) ≈

Average rank 2.63 1.88 2.69 2.80

+/−/≈ 13/10/1 12/10/2 12/12/0 11/12/1

Then, we examine the performance of MOEA/D, MOEA/D-OP2, MOEA/D-FRRMAB and MA-
DAC on different problems. The operator pool of FRRMAB is just the four types of DE operators.
The results in Table 9 show that MOEA/D-FRRMAB is better than MOEA/D and MOEA/D-OP2,
disclosing the effectiveness of adjusting the type of reproduction operators. We can also observe that
the proposed MA-DAC clearly performs the best.

B.4 Analysis of the adaptive weights

In this subsection, we compare MA-DAC with MOEA/D-AWA [37], which dynamically adjusts
the weights of MOEA/D based on predefined heuristic intervals. The concrete way of adjusting the
weights of MOEA/D-AWA and MA-DAC are the same, as described in Appendix A.3. Table 10
shows the results, where MOEA/D-OP2-AWA refers to MOEA/D-AWA using the DE operator OP2
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Table 9: IGD values obtained by MOEA/D, MOEA/D-OP2, MOEA/D-FRRMAB and MA-DAC on different
problems. Each result consists of the mean and standard deviation of 30 runs. The best mean value on each
problem is highlighted in bold. The symbols ‘+’, ‘−’ and ‘≈’ indicate that the result is significantly superior
to, inferior to, and almost equivalent to MA-DAC, respectively, according to the Wilcoxon rank-sum test with
significance level 0.05.

Problem M MOEA/D MOEA/D-OP2 MOEA/D-FRRMAB MA-DAC

DTLZ2
3 4.605E-02 (3.54E-04) − 4.691E-02 (3.97E-04) − 4.668E-02 (2.50E-04) − 3.807E-02 (5.05E-04)
5 3.006E-01 (1.55E-03) − 3.012E-01 (1.51E-03) − 3.031E-01 (1.29E-03) − 2.442E-01 (1.26E-02)
7 4.455E-01 (1.41E-02) − 4.551E-01 (4.43E-03) − 4.724E-01 (7.80E-03) − 3.944E-01 (1.17E-02)

WFG4
3 5.761E-02 (5.41E-04) − 7.293E-02 (1.43E-03) − 7.097E-02 (1.63E-03) − 5.200E-02 (1.19E-03)
5 3.442E-01 (1.21E-02) − 2.761E-01 (6.39E-03) − 2.799E-01 (9.44E-03) − 1.868E-01 (2.81E-03)
7 4.529E-01 (1.79E-02) − 3.711E-01 (9.79E-03) − 3.778E-01 (1.01E-02) − 3.033E-01 (3.66E-03)

WFG6
3 6.938E-02 (5.50E-03) − 6.714E-02 (1.59E-02) − 6.266E-02 (8.47E-03) − 4.831E-02 (8.95E-03)
5 3.518E-01 (2.82E-03) − 3.285E-01 (2.33E-02) − 3.272E-01 (1.61E-02) − 1.942E-01 (6.90E-03)
7 4.869E-01 (3.03E-02) − 4.797E-01 (3.04E-02) − 4.417E-01 (3.29E-02) − 3.112E-01 (4.93E-03)

Train: average rank 3.11 3.00 2.89 1.00

Train: +/−/≈ 0/9/0 0/9/0 0/9/0

DTLZ4
3 6.231E-02 (8.85E-02) ≈ 6.226E-02 (4.05E-03) − 5.782E-02 (3.48E-03) − 6.700E-02 (6.14E-02)
5 3.133E-01 (4.45E-02) ≈ 3.413E-01 (1.48E-02) − 3.373E-01 (1.70E-02) − 2.995E-01 (2.10E-02)
7 4.374E-01 (2.57E-02) − 4.519E-01 (1.15E-02) − 4.681E-01 (1.87E-02) − 4.182E-01 (1.21E-02)

WFG5
3 6.327E-02 (1.10E-03) − 6.177E-02 (8.01E-04) − 6.120E-02 (7.38E-04) − 4.730E-02 (7.89E-04)
5 3.350E-01 (9.77E-03) − 3.052E-01 (7.19E-03) − 3.033E-01 (8.69E-03) − 1.811E-01 (3.02E-03)
7 4.101E-01 (2.08E-02) − 4.988E-01 (1.04E-02) − 5.045E-01 (9.70E-03) − 3.206E-01 (8.04E-03)

WFG7
3 5.811E-02 (6.31E-04) − 6.033E-02 (8.84E-04) − 5.976E-02 (7.44E-04) − 4.066E-02 (5.31E-04)
5 3.572E-01 (5.47E-03) − 2.941E-01 (9.66E-03) − 3.042E-01 (1.52E-02) − 1.858E-01 (2.12E-03)
7 5.236E-01 (2.19E-02) − 4.739E-01 (2.51E-02) − 4.762E-01 (2.74E-02) − 3.258E-01 (1.25E-02)

WFG8
3 8.646E-02 (3.44E-03) − 9.598E-02 (1.22E-03) − 9.536E-02 (1.14E-03) − 7.901E-02 (1.19E-03)
5 4.258E-01 (8.42E-03) − 3.884E-01 (1.19E-02) − 3.917E-01 (9.00E-03) − 2.479E-01 (7.20E-03)
7 5.816E-01 (1.30E-02) − 5.587E-01 (1.56E-02) − 5.570E-01 (1.60E-02) − 4.127E-01 (5.93E-03)

WFG9
3 5.817E-02 (1.24E-03) − 8.122E-02 (2.54E-02) − 6.445E-02 (1.72E-02) − 4.159E-02 (6.10E-04)
5 3.633E-01 (1.20E-02) − 3.300E-01 (1.47E-02) − 3.312E-01 (1.70E-02) − 1.832E-01 (7.10E-03)
7 5.538E-01 (2.63E-02) − 5.001E-01 (2.59E-02) − 5.145E-01 (2.82E-02) − 3.278E-01 (7.21E-03)

Test: average rank 3.13 2.87 2.80 1.20

Test: +/−/≈ 0/13/2 0/15/0 0/15/0

(which has been shown to be the best among the four investigated DE operators in the last subsection)
instead of the SBX operator. We can observe that MA-DAC performs the best in all problems except
DTLZ4, where MOEA/D-AWA is better. Note that DTLZ4 is not used for training MA-DAC, and the
worse performance than MOEA/D-AWA on this problem also implies that MA-DAC can be further
improved in the future.

B.5 IGD values during the optimization process

We plot the curves of IGD value of all the compared methods (i.e., MOEA/D, MOEA/D-FRRMAB,
MOEA/D-AWA, DQN, MA-UCB and MA-DAC) on the problems with 3, 5 and 7 objectives of
30 runs, as shown in Figures 2, 3 and 4, respectively. We can observe that MA-DAC performs the
best in general, and the superiority is more clear on the problems with 5 and 7 objectives. As the
number of objectives increases, the problems become more difficult, thus requiring a powerful policy
of adjusting the configuration hyperparameters. This also implies the applicability of MA-DAC in
solving difficult problems.

B.6 Comparison with different DQN variants

DQN has been shown the limited ability to handle large-scale action spaces [4, 5]. To improve the
compared baseline, we use DQN to dynamically adjust each type of hyperparameter of MOEA/D,
resulting in four DQN variants, denoted as DQN-1, DQN-2, DQN-3 and DQN-4. They represent
using DQN to adjust weights, neighborhood size, types of reproduction operators, and parameters of
reproduction operators, respectively. Other fixed hyperparameters’ default settings are the same as
those in Appendix B.1. We compare them with DQN (which dynamically adjusts all the hyperpa-
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Table 10: IGD values obtained by MOEA/D, MOEA/D-AWA, MOEA/D-OP2-AWA and MA-DAC on different
problems. Each result consists of the mean and standard deviation of 30 runs. The best mean value on each
problem is highlighted in bold. The symbols ‘+’, ‘−’ and ‘≈’ indicate that the result is significantly superior
to, inferior to, and almost equivalent to MA-DAC, respectively, according to the Wilcoxon rank-sum test with
significance level 0.05.

Problem M MOEA/D MOEA/D-AWA MOEA/D-OP2-AWA MA-DAC

DTLZ2
3 4.605E-02 (3.54E-04) − 4.596E-02 (3.54E-04) − 4.670E-02 (3.30E-04) − 3.807E-02 (5.05E-04)
5 3.006E-01 (1.55E-03) − 2.900E-01 (2.73E-03) − 2.764E-01 (3.40E-03) − 2.442E-01 (1.26E-02)
7 4.455E-01 (1.41E-02) − 4.167E-01 (2.37E-02) − 4.436E-01 (8.67E-03) − 3.944E-01 (1.17E-02)

WFG4
3 5.761E-02 (5.41E-04) − 5.748E-02 (7.11E-04) − 7.280E-02 (1.33E-03) − 5.200E-02 (1.19E-03)
5 3.442E-01 (1.21E-02) − 3.168E-01 (5.37E-03) − 2.648E-01 (8.15E-03) − 1.868E-01 (2.81E-03)
7 4.529E-01 (1.79E-02) − 4.285E-01 (1.55E-02) − 3.676E-01 (1.06E-02) − 3.033E-01 (3.66E-03)

WFG6
3 6.938E-02 (5.50E-03) − 6.846E-02 (4.70E-03) − 6.078E-02 (1.16E-03) − 4.831E-02 (8.95E-03)
5 3.518E-01 (2.82E-03) − 3.190E-01 (3.93E-03) − 3.143E-01 (2.52E-02) − 1.942E-01 (6.90E-03)
7 4.869E-01 (3.03E-02) − 4.727E-01 (3.05E-02) − 4.770E-01 (3.24E-02) − 3.112E-01 (4.93E-03)

Train: average rank 3.78 2.56 2.67 1.00

Train: +/−/≈ 0/9/0 0/9/0 0/9/0

DTLZ4
3 6.231E-02 (8.85E-02) ≈ 4.597E-02 (3.66E-04) ≈ 6.219E-02 (3.90E-03) − 6.700E-02 (6.14E-02)
5 3.133E-01 (4.45E-02) ≈ 2.816E-01 (3.24E-03) + 3.283E-01 (1.08E-02) − 2.995E-01 (2.10E-02)
7 4.374E-01 (2.57E-02) − 3.696E-01 (1.32E-02) + 4.437E-01 (9.46E-03) − 4.182E-01 (1.21E-02)

WFG5
3 6.327E-02 (1.10E-03) − 6.376E-02 (9.85E-04) − 6.168E-02 (4.61E-04) − 4.730E-02 (7.89E-04)
5 3.350E-01 (9.77E-03) − 3.173E-01 (5.33E-03) − 3.024E-01 (6.02E-03) − 1.811E-01 (3.02E-03)
7 4.101E-01 (2.08E-02) − 4.095E-01 (1.94E-02) − 4.865E-01 (1.28E-02) − 3.206E-01 (8.04E-03)

WFG7
3 5.811E-02 (6.31E-04) − 5.837E-02 (6.25E-04) − 6.017E-02 (6.74E-04) − 4.066E-02 (5.31E-04)
5 3.572E-01 (5.47E-03) − 3.227E-01 (4.19E-03) − 2.885E-01 (1.25E-02) − 1.858E-01 (2.12E-03)
7 5.236E-01 (2.19E-02) − 5.004E-01 (3.80E-02) − 4.560E-01 (2.56E-02) − 3.258E-01 (1.25E-02)

WFG8
3 8.646E-02 (3.44E-03) − 8.742E-02 (6.36E-04) − 9.572E-02 (8.39E-04) − 7.901E-02 (1.19E-03)
5 4.258E-01 (8.42E-03) − 4.216E-01 (1.18E-02) − 3.824E-01 (9.74E-03) − 2.479E-01 (7.20E-03)
7 5.816E-01 (1.30E-02) − 5.790E-01 (1.06E-02) − 5.632E-01 (1.27E-02) − 4.127E-01 (5.93E-03)

WFG9
3 5.817E-02 (1.24E-03) − 5.809E-02 (1.45E-03) − 6.470E-02 (1.75E-02) − 4.159E-02 (6.10E-04)
5 3.633E-01 (1.20E-02) − 3.517E-01 (2.19E-02) − 3.024E-01 (1.36E-02) − 1.832E-01 (7.10E-03)
7 5.538E-01 (2.63E-02) − 5.108E-01 (2.65E-02) − 4.861E-01 (2.78E-02) − 3.278E-01 (7.21E-03)

Test: average rank 3.33 2.53 2.80 1.33

Test: +/−/≈ 0/13/2 2/12/1 0/15/0
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Figure 2: Curves of IGD value obtained by the compared methods on the 3-objective problems.
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Figure 3: Curves of IGD value obtained by the compared methods on the 5-objective problems.
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Figure 4: Curves of IGD value obtained by the compared methods on the 7-objective problems.

rameters of MOEA/D) on all the functions with 3, 5 and 7 objectives. Training functions remain the
same. That is, DTLZ2, WFG4 and WFG6.

The results are shown in Table 11. As expected, all the four DQN variants outperform the DQN
version that adjusts all four hyperparameters, demonstrating the ineffectiveness of using a single
agent to solve complex DAC problems with large action spaces. Furthermore, it can also be observed
that DQN-1 performs the best among the four DQN variants, which is consistent with the observation
in Table 4, i.e., adjusting weights is generally more important.

B.7 Comparison with different MARL algorithms

To further demonstrate that the effectiveness of MA-DAC is agnostic to specific MARL algorithms,
we use two more MARL algorithms as the implementations of policy networks, i.e., Independent Q
Learning (IQL) [47] and QMIX [38]. IQL models each hyperparameter as an individual agent and
trains each agent independently, where each agent learns an individual value function that ignores the
possible effect of other agents. QMIX and VDN are value decomposition algorithms that decompose
the joint value function into individual value functions. Compared to the linear value decomposition
of VDN, QMIX employs a non-linear mixing network to decompose the total reward, enabling the
learning of a rich joint value function.

As shown in Table 12, all the three MA-DAC policies have clear advantage over the competitive
baseline DQN-1, demonstrating the effectiveness of MA-DAC. We can also see that no MARL
algorithm can take a lead on all the instances, although QMIX is theoretically a better algorithm [38].
One possible reason is that the tasks’ strong randomness and heterogeneity introduce new challenges.
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Table 11: IGD values obtained by DQN-1, DQN-2, DQN-3 and DQN-4 on different problems. Each result
consists of the mean and standard deviation of 30 runs. The best mean value of each problem is highlighted in
bold. The symbols ‘+’, ‘−’ and ‘≈’ indicate that the result is significantly superior to, inferior to, and almost
equivalent to DQN, respectively, according to the Wilcoxon rank-sum test with significance level 0.05.

Problem M DQN-1 DQN-2 DQN-3 DQN-4

DTLZ2
3 4.100E-02 (7.64E-04) + 4.283E-02 (5.50E-04) + 4.284E-02 (3.47E-04) + 4.244E-02 (5.46E-04) +
5 2.408E-01 (1.03E-02) + 2.469E-01 (3.31E-03) + 2.531E-01 (3.43E-03) + 2.530E-01 (4.35E-03) +
7 4.064E-01 (1.14E-02) + 4.164E-01 (8.81E-03) + 4.149E-01 (8.92E-03) + 4.132E-01 (8.89E-03) +

WFG4
3 6.136E-02 (1.80E-03) + 6.383E-02 (1.92E-03) + 5.885E-02 (1.50E-03) + 6.031E-02 (1.24E-03) +
5 1.887E-01 (2.15E-03) + 2.264E-01 (4.37E-03) + 2.351E-01 (5.49E-03) + 2.274E-01 (3.69E-03) +
7 3.018E-01 (3.14E-03) + 3.421E-01 (9.24E-03) + 3.427E-01 (9.67E-03) + 3.419E-01 (9.62E-03) +

WFG6
3 5.149E-02 (1.17E-02) + 5.104E-02 (8.75E-03) + 6.538E-02 (2.37E-02) + 6.120E-02 (2.10E-02) +
5 1.991E-01 (9.10E-03) + 2.642E-01 (2.21E-02) + 2.665E-01 (1.73E-02) + 2.712E-01 (2.29E-02) +
7 3.204E-01 (7.11E-03) + 3.992E-01 (2.64E-02) + 3.967E-01 (2.29E-02) + 3.824E-01 (1.88E-02) +

Train: +/−/≈ 9/0/0 9/0/0 9/0/0 9/0/0

DTLZ4
3 4.697E-02 (3.78E-03) + 5.249E-02 (1.14E-02) + 6.116E-02 (5.10E-02) + 5.469E-02 (3.65E-02) +
5 3.074E-01 (1.24E-02) + 3.136E-01 (1.19E-02) + 3.207E-01 (1.26E-02) + 3.243E-01 (1.75E-02) +
7 4.263E-01 (1.28E-02) + 4.179E-01 (1.44E-02) + 4.330E-01 (2.83E-02) + 4.211E-01 (1.21E-02) +

WFG5
3 4.815E-02 (6.96E-04) + 5.173E-02 (7.46E-04) + 5.188E-02 (5.99E-04) + 5.175E-02 (7.38E-04) +
5 1.833E-01 (3.37E-03) + 2.532E-01 (5.66E-03) + 2.537E-01 (5.17E-03) + 2.560E-01 (6.80E-03) +
7 3.294E-01 (8.51E-03) + 4.053E-01 (1.80E-02) + 4.090E-01 (1.11E-02) + 4.088E-01 (1.34E-02) +

WFG7
3 4.624E-02 (6.74E-04) + 4.841E-02 (1.20E-03) + 4.638E-02 (8.69E-04) + 4.690E-02 (8.85E-04) +
5 1.835E-01 (3.02E-03) + 2.476E-01 (7.11E-03) + 2.492E-01 (5.16E-03) + 2.445E-01 (9.30E-03) +
7 3.274E-01 (1.15E-02) + 3.956E-01 (1.96E-02) + 3.951E-01 (1.88E-02) + 3.843E-01 (1.81E-02) +

WFG8
3 8.658E-02 (1.30E-03) + 8.850E-02 (1.40E-03) + 8.490E-02 (2.33E-03) + 8.555E-02 (1.59E-03) +
5 2.519E-01 (8.57E-03) + 3.216E-01 (1.01E-02) + 3.485E-01 (1.65E-02) + 3.328E-01 (1.29E-02) +
7 4.163E-01 (7.50E-03) + 5.153E-01 (1.61E-02) + 5.172E-01 (1.73E-02) + 4.970E-01 (1.12E-02) +

WFG9
3 7.747E-02 (2.46E-02) − 7.320E-02 (2.62E-02) ≈ 4.969E-02 (1.34E-02) + 6.138E-02 (2.42E-02) +
5 2.041E-01 (5.21E-03) + 2.542E-01 (1.03E-02) + 2.493E-01 (9.82E-03) + 2.486E-01 (1.18E-02) +
7 3.418E-01 (1.18E-02) + 4.088E-01 (1.71E-02) + 4.179E-01 (1.89E-02) + 4.069E-01 (1.73E-02) +

Test: +/−/≈ 14/1/0 14/0/1 15/0/0 15/0/0

We will further investigate the MARL algorithm in this regard, and meanwhile we hope that the
MaMo benchmark can attract the attention of the MARL community to this type of problems.

C Experiments on DACBench

DACBench [12] is a benchmark library for DAC which collects and standardizes existing DAC
benchmarks from different domains. Among these benchmarks, Sigmoid [4] is an ideal one for DAC
developers to test the performance of the learned policy. Sigmoid can generate instance sets with a
wide range of difficulties, e.g., by increasing the number of parameters and their configuration space
dimension, or extending the heterogeneity between instances.

To formulate the instance set of Sigmoid, one needs to specify the number Np of parameters, the
size Dj of the configuration space for each parameter j, and the way to generate the distribution
of the instances. For each parameter j in a given instance i, we need to choose its configuration to
approximate an independent Sigmoid function

sig(t, si,j , pi,j) = (1 + e−si,j ·(t−pi,j))−1,

where si,j is a scaling factor, and pi,j is an infection point; they are the instance information for each
parameter j sampled from predefined distributions. To simulate interaction effects of the individual
parameters, the total reward is computed as

rt =

Np∏
j=1

(1− abs (sig (t, si,j , pi,j)− aj,t)) ,

where aj,t is the configuration value for parameter j at step t.

Firstly, we conduct experiments on the 5D-Sigmoid (i.e., there are Np = 5 agents in MA-DAC) with
action space size Dj = 3 (i.e., each agent has a 3-dimensional discrete action space). The instance
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Table 12: IGD values obtained by DQN-1, VDN, IQL and QMIX on different problems. Each result consists of
the mean and standard deviation of 30 runs. The best mean value of each problem is highlighted in bold. The
symbols ‘+’, ‘−’ and ‘≈’ indicate that the result is significantly superior to, inferior to, and almost equivalent to
DQN-1 in Table 11, respectively, according to the Wilcoxon rank-sum test with significance level 0.05.

Problem M DQN-1 VDN IQL QMIX

DTLZ2
3 4.100E-02 (7.64E-04) 3.807E-02 (5.05E-04) + 3.933E-02 (4.29E-04) + 3.916E-02 (7.21E-04) +
5 2.408E-01 (1.03E-02) 2.442E-01 (1.26E-02) ≈ 2.310E-01 (9.29E-03) + 2.419E-01 (1.37E-02) ≈
7 4.064E-01 (1.14E-02) 3.944E-01 (1.17E-02) + 4.138E-01 (9.79E-03) − 4.162E-01 (1.59E-02) −

WFG4
3 6.136E-02 (1.80E-03) 5.200E-02 (1.19E-03) + 5.438E-02 (8.83E-04) + 5.206E-02 (1.16E-03) +
5 1.887E-01 (2.15E-03) 1.868E-01 (2.81E-03) + 1.879E-01 (2.78E-03) ≈ 1.859E-01 (2.25E-03) +
7 3.018E-01 (3.14E-03) 3.033E-01 (3.66E-03) ≈ 3.046E-01 (3.55E-03) − 2.998E-01 (4.21E-03) +

WFG6
3 5.149E-02 (1.17E-02) 4.831E-02 (8.95E-03) + 5.592E-02 (1.57E-02) ≈ 4.542E-02 (3.02E-03) +
5 1.991E-01 (9.10E-03) 1.942E-01 (6.90E-03) + 1.981E-01 (6.76E-03) ≈ 1.975E-01 (6.98E-03) ≈
7 3.204E-01 (7.11E-03) 3.112E-01 (4.93E-03) + 3.148E-01 (3.34E-03) + 3.128E-01 (7.39E-03) +

Train: +/−/≈ 7/0/2 4/2/3 6/1/2

DTLZ4
3 4.697E-02 (3.78E-03) 6.700E-02 (6.14E-02) ≈ 6.328E-02 (4.48E-02) − 5.094E-02 (2.38E-03) −
5 3.074E-01 (1.24E-02) 2.995E-01 (2.10E-02) + 3.021E-01 (1.62E-02) ≈ 3.013E-01 (1.80E-02) +
7 4.263E-01 (1.28E-02) 4.182E-01 (1.21E-02) + 4.323E-01 (1.43E-02) ≈ 4.303E-01 (1.95E-02) ≈

WFG5
3 4.815E-02 (6.96E-04) 4.730E-02 (7.89E-04) + 4.818E-02 (6.24E-04) ≈ 4.736E-02 (7.49E-04) +
5 1.833E-01 (3.37E-03) 1.811E-01 (3.02E-03) + 1.812E-01 (2.21E-03) + 1.813E-01 (2.54E-03) +
7 3.294E-01 (8.51E-03) 3.206E-01 (8.04E-03) + 3.173E-01 (6.91E-03) + 3.175E-01 (7.19E-03) +

WFG7
3 4.624E-02 (6.74E-04) 4.066E-02 (5.31E-04) + 4.313E-02 (7.79E-04) + 4.077E-02 (4.94E-04) +
5 1.835E-01 (3.02E-03) 1.858E-01 (2.12E-03) − 1.832E-01 (2.34E-03) ≈ 1.825E-01 (3.16E-03) ≈
7 3.274E-01 (1.15E-02) 3.258E-01 (1.25E-02) ≈ 3.219E-01 (1.09E-02) + 3.226E-01 (1.12E-02) +

WFG8
3 8.658E-02 (1.30E-03) 7.901E-02 (1.19E-03) + 8.652E-02 (2.75E-03) ≈ 7.909E-02 (1.60E-03) +
5 2.519E-01 (8.57E-03) 2.479E-01 (7.20E-03) + 2.544E-01 (8.10E-03) ≈ 2.496E-01 (9.83E-03) ≈
7 4.163E-01 (7.50E-03) 4.127E-01 (5.93E-03) + 4.175E-01 (7.32E-03) ≈ 4.006E-01 (9.42E-03) +

WFG9
3 7.747E-02 (2.46E-02) 4.159E-02 (6.10E-04) + 4.423E-02 (7.08E-04) + 4.167E-02 (5.92E-04) +
5 2.041E-01 (5.21E-03) 1.832E-01 (7.10E-03) + 1.915E-01 (8.87E-03) + 1.921E-01 (6.43E-03) +
7 3.418E-01 (1.18E-02) 3.278E-01 (7.21E-03) + 3.322E-01 (8.41E-03) + 3.298E-01 (8.46E-03) +

Test: +/−/≈ 12/1/2 7/1/7 11/1/3

information for each parameter is re-sampled from a predefined normal distribution at the beginning
of an episode. This is a very difficult problem, and none of the learned policies in [4] can achieve
satisfactory performance due to the large action space.

We choose the DQN in [4], and the best static policy achieved by SMAC [20] as our baselines. All the
settings of experiments and baselines are consistent with [4]7. For MA-DAC, we use three popular
MARL algorithms, i.e., VDN, IQL and QMIX, as the internal implementation (see Appendix B.7
for the details of these algorithms). We implement VDN, IQL and QMIX policy networks based on
the EPyMARL8 [36] framework and use the default hyperparameters, except for changing the hidden
layer size from 64 to 32, because of the smaller state space. The state and reward of Sigmoid for each
agent in MA-DAC are same as the DQN baseline, where the only difference is that MA-DAC models
each parameter as an individual agent.

As shown in Figure 5(a), all MA-DAC methods perform significantly better than DQN and static
policies. The action space of the DQN agent increases exponentially with the number of parameters,
making it hard to find a good policy and thus fail on this task [34, 58]. In contrast, MA-DAC can solve
this task well by decomposing the action space so that each agent searches in a much smaller action
space. Meanwhile, the independent learning method (i.e., IQL) is inferior to centralized training
methods (i.e., VDN and QMIX). This is because the environment becomes non-stationary due to the
concurrent learning of multiple learners [35].

Next, to test the scalability of MA-DAC, we create another task named 10D-Sigmoid, whose only
difference from 5D-Sigmoid is that it has 10 parameters to be configured. The DQN implementation
of the DAC method cannot handle this task’s ten thousand-dimensional action space due to its
exponential growth in action space with the number of configured parameters. So we only take the
best static policy discussed above as the baseline. As shown in Figure 5(b), all MA-DAC versions

7https://github.com/automl/DAC
8https://github.com/uoe-agents/epymarl
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Figure 5: Curves of return value obtained by the compared methods on two Sigmoid tasks of 10 runs.

can still find higher return than static policy, demonstrating the scalability of MA-DAC. QMIX
outperforms VDN due to its more accurate value decomposition from the non-linear mixing network.
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